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Motivation

Gauge theory

•Studying phase diagrams of large N gauge theories is
important:
(a) Confinement/deconfinement transition
(b) Chiral symmetry breaking transition

•There are also specifically “large N” transitions
(c) GWW transition

•Methods of study:
weak ’tHooft coupling: Large N perturbation theory,
nonperturbative (large D)
strong coupling: Lattice, Gauge-gravity.
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Motivation

Gravity

• In gravity, there are interesting phase transitions in their own
right:
(a’) Hot gravitons (in AdS) → AdS Black holes (Hawking-Page)
(b’) Black strings → Black holes (Gregory-Laflamme)
(c’) AdS soliton → AdS Black hole (Witten,...)

•Conjectured correspondences (good evidence in special
cases)
(a) Confinement/Deconfinement <-> (a’) Hawking-Page
(c) GWW <-> (b’) GL
etc.
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Motivation

Gauge-gravity

•Correspondences are best studied for N=4 SYM in 4
dimensions (time x R3 or time x S3) <-> AdS5 (Poincare) or
AdS5 (global), which are derived from a scaling limit of D3
branes.

•However, it is possible to extend these to lower Dp (p<3)
branes, which yields the correspondence
d=(p+1) dim gauge theories (with D=9-p adjoint scalars) <->
AdSp+2 gravity
[cf. IMSY, Aharony-Marsano-Minwalla-Wiseman,
Martinec-Sahakian,..., our works]
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New technique

• On the gauge theory side, perturbation theory sometimes does not
take us far, and nonperturbative techniques are required.

• We will discuss a new technique* to compute free energies and
various order parameters in d dimensional (d=0,1,2) gauge theories.
Consider a bosonic YM theory with action

S =
1
4

∫

ddxTr



F 2
µν +

1
2

D
∑

I=1

DµY IDµY I − g2
∑

I,J

1
4
[Y I ,Y J ]2





Can we treat the Y 4 term in a fashion similar to 4-fermi terms as in
Gross-Neveu or NJL models?

*Hotta-Nishimura-Tsuchiya, Mahato-Mandal-Morita
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Large Nf

Recall Gross-Neveu:

S =

∫

d2x
(

ψ̄i∂µγ
µψi − g(ψ̄iψi)

2
)

The technique to solve Gross-Neveu model is to introduce an
auxiliary dynamical field φ, g(ψ̄iψi)

2 = φψ̄iψi − φ2/(4g) and
integrate out the fermions to get

Seff [φ] = Nf logDet(γµ∂µ + 2φ) + φ2/(4g) -1.0 -0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

In the large Nf limit, Nf g = λ fixed, the 1-loop term competes
with the tree level term. Hence, a non-trivial value of the
flavour-singlet condensate

< φ >=
2λ
Nf

< ψ̄iψi > 6= 0

appears at the new saddle point. [BCS, χSB, ...]
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YM= Bosonic Gross-Neveu

•Can we write Y 4 = −B2/4 + BY 2 etc. to get a non-trivial
vacuum with < Y 2 > 6= 0?
What could Y 2 be? It can’t be of the form Tr [Y ,Y ] which
trivially vanishes. It can be Tr(Y IY J), but we can’t write
Tr([YI ,YJ ]

2) = BIJTr [Y IY J ]− B2
IJ/4 (single trace 6= double

trace).

•Turns out that by considering gauge-non-invariant, but
SO(D)-invariant auxiliary fields, we CAN write

Tr [YI ,YJ ]
2 ≡ −Y I

aY J
b Mab,cdY J

c Y J
d = BabM−1

ab;cdBcd − 2iBabY I
aY I

b

where we have written Y I = Y I
aλa, and

Mab,cd = −1
4

{

Tr [λa, λc][λb, λd ]+(a ↔ b)+(c ↔ d)+(a ↔ b, c ↔ d)
}

Now Y is only quadratic; integrating over Y , we get
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Large D saddle point

Z =

∫

DAµDBab exp[−Seff [A,B], Seff [A,B] =

=

∫

dd x [
1

4g2

(

F 2
µν + BabM−1

ab;cdBcd

)

] + (D/2)logDet(−D2
µδab + iBab)

The idea now is to take a ’tHooft-like limit D → ∞,g2 → 0 with
g2D = (ĝ)2 held fixed. The determinant term will now compete with
the tree level term, leading to a new large D saddle point for
< Bab >= iMab,cd < Y I

cY I
c > Note complex contour.

• In the examples we consider below, we will obtain saddle point
values of the form < Bab >= i∆2δab, which will imply dynamical
generation of a condensate of the form

(1/D) < Y I
aY I

b >= ∆2δab

or, equivalently a mass gap MY = ∆ (cf. the BY 2 term). In the large D
saddle point, the field Bab can be treated as classical, leading to a
large D evaluation of Seff [A].
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Other questions

•Volume dependence of results (e.g. nature of phase
transitions) in gauge theories (see later).

•The new technique can have potential applications to any
model with [Y I ,Y J ]2 interaction. E.g, the model

S =

∫

dt Tr



(∂tY I)2 − g2
∑

I,J

1
4
[Y I ,Y J ]2





can be used to study issues related to the arrow of time [cf. Liu;
Iizhuka & Polchinski, ...]

•Appearance of size (horizon?) 〈TrY IY I〉/(ND) ∼ ∆2
0. In fact,

Ψ(Y 2) ∼ δ(Y 2 − Y 2
0 ). (see figure)

•Saddle point configuration corresponds to black objects, with
entropy O(N2). Origin in the Y I quantum mechanics?
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Y

Y2

1

horizon?
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Plan

Introduction and Technique

d=0

d=1 and D1

d=2 and D2

Dynamical phase transitions

Conclusions and open problems
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d=0

No gauge fields!

Z =

∫

dY I exp[− 1
4g2 Tr

∑

I,J

[Y I ,Y J ]2]

=

∫

DY I
aDBab exp[

1
4g2 BabM−1

ab,cdBcd − i
2g2 BabY I

aY I
b]

=

∫

DBabe−S ,S =
1

4g2 BabM−1
ab,cdBcd + D/2logdet[Bab] (1)

This can be computed at finite N, in a large D expansion! The leading
term comes from the trace part Bab = B0δab:

S =
NB2

0

8ĝ2 +
(N2 − 1)

4
log
(

− B2
0

ĝ2N

)

where (ĝ)2 = g2D. At large N,

F = − log Z
DN2 = −1

4
+

log 2
4

+
1
D

(

−5
8
+

1
2

log
3
2

)

+ O
(

1
D2

)

.
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d=0: comparison with numerics

The circles represent numerical values of 1/(DN) < trY IY I > /(ĝ/
√

2)
(extrapolated to N = ∞), while the dotted line represents the 1/D
result discussed above. [The analytic result was also independently
obtained by Hotta-Nishimura-Tsuchiya].
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d=0

Can compute F at finite N in a large D expansion.

Solves bosonic IKKT.

Full IKKT model can be solved for specific D’s. [with
Hiroshi Osono (in progress)]
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d=1

This is the first non-trivial dimension involving a gauge field. Consider
the size of the Euclidean dimension to be finite, β.

Z =

∫

DA0DY Ie−S,

S =

∫ β

0
dt Tr





D
∑

I=1

1
2

(

D0Y I)2 −
∑

I,J

g2

4
[Y I ,Y J ][Y I ,Y J ]



 . (2)

Step 1: Wilson loop:
For finite β, can’t gauge away A0; fix gauge ∂tA0 = 0 [Aharony et al]

∆FP = exp[−SFP ],SFP = N2
∞
∑

n=1

|un|2/n

where un = (1/N)TrUn,U = P exp[i
∮

dtA0]. Thus, A0 reduces only to
the Wilson loop (Polyakov loop).
u1 = 0: centre symmetry unbroken (“confined” phase); u1 6= 0: centre
symmetry broken (“deconfined” phase).
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d=1: Integrate Y ’s

Step 2: Integrate out Y I :
We show results only for the dominant mode Bab(t) = i∆2δab

D
2

log
(

det
(

−D2
0 +△2

))

=
DN2β△

2
− D

∞
∑

n=1

xn

n
|un|2.

Combining with the classical B2 term, and ∆FP we get

S(△, {un})
DN2 = −β△

4

8λ̃
+
β△
2

+
∞
∑

n=1

(

1/D − xn

n

)

|un|2.

where λ̃ = λD = g2ND is the large D ’tHooft coupling.
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d=1: Large D saddle point

Step 3: Evaluate ∆ at the saddle point

△0({un}) = λ̃1/3

(

1 +
2
3

∞
∑

n=1

x̄n|un|2
)

+ · · · ,

where x̄ = exp[−βλ̃1/3].
Step 4: Put this back in S[∆, {un}]:

S({un})
DN2 =

3
8
βλ̃1/3 + a1|u1|2 + b1|u1|4 +

∞
∑

n=2

an|un|2 + · · · ,

an =
1
n
(1/D − x̄n) ,

b1 =
1
3
βλ̃1/3x̄2, (3)

where the · · · involve other u4
n terms for n > 1, which are down

at large D.
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d=1: Landau-Ginzburg

0

S/DN2

|u1|

1/2

T < Tc1

T = T
c1

T
c1 < T < T

c2

T = Tc2

T > Tc2

As T crosses Tc1, u1 becomes tachyonic and there is a second
order phase transition which signals an onset of non-uniformity
in the eigenvalue distribution ρ(α). At T = Tc2, characterized by
a potential minimum at |u1| = 1/2, a gap develops in the
eigenvalue distribution, signalling a GWW transition.
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d=1: phase diagram

TT c2c1

2nd order 3rd order (GWW)

uniform

ρ

θ

ρ

θ
ρ

θ

Τ

Tc1 Tc2 R2 F0

Numerical result 0.8761 0.905 2.291 6.695
Leading large-D result 0.947 0.964 2.16 7.02
Large-D including 1/D effect 0.895 0.917 2.28 6.72

2nd and 3rd rows are our results, with D = 9 (10-dimensional YM
theory compactified to d=1). Numerical results are from Nishimura
and Kawahara. The agreement between the 3rd row and the 1st row
are within 1% (which is 1/D2).
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d=1: chemical potential [Takeshi]
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Gravity correspondence: D1 branes

D1 branes= 2d SYM; wrap D1 on L. Also curl the Euclidean time
direction into a circle of length β.
There are various possible BC’s for the fermions along β,L. (AP,P)
corresponds to a black string. In terms of dual D0 branes, we have a
Gregory-Laflamme transition.

uniform

non-uniform

gapped

2d SYM 1d YM

0d YM

t′

λ′

1st

2nd

3rd

λ′ = t′3

λ′ = 1/t′

1d SYM

Figure: λ′ = λ2L2, t′ = L/β2. Below λ′ = t′3, the temporal KK modes (and fermions) can be ignored, (⇒
d = 1 YM). Below λ′ = 1/t′ , the spatial KK modes can be ignored (⇒ d=1 SYM). The overlap of these 2 regions

⇒ d=0 YM. The two phase transition lines below λ′ = t′3 are given by λ′ t′ = 1/T 3
c1 and λ′ t′ = 1/T 3

c2 . A similar
phase structure was earlier inferred in [Kawahara] on the basis of numerical analysis.
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d=2

Consider d = 2 Euclidean YM theory with D ajoint scalars,
compactified on a 2-torus T 2.

S =

∫ β

0
dt
∫ L

0
dx Tr





1
2g2 F 2

01 +
D
∑

I=1

1
2

(

DµY I
)2

−
∑

I,J

g2

4
[Y I ,Y J ][Y I ,Y J ]





We now have two Wilson lines U = P exp[i
∮ β A] and

V = P exp[i
∮ L A] along the two cycles. There are now possibly

4 or more phases, corresponding to whether TrU,TrV are zero
or non-zero and whether a non-zero Wilson line can exist in 2
distinct phases (non-uniform vs gapped eigenvalue
distribution).
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d=2: small L

•For small enough L, the problem reduces to d = 1, with A1

turning into an extra Y , which we have solved above.

•Note: large N volume independence arguments. In the centre
symmetric phase (Tr V=0: uniform eigenvalues), KK reduction
does not work in the usual fashion since new soft modes, with
mass ∼ 1/(NL), appear. However, for small enough L,
eigenvalues of A1 are clumped near 0 (this is consistent with
eigenvalues of A0 getting more and more clumped at low
enough β) hence centre symmetry along L is broken (Tr V 6= 0).
Hence KK reduction works along L and the problem simplifies
to the d = 1 model.
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d=2: large L

Need to evaluate the 1-loop effective action

S(1)(Aµ,∆) =
D
2

log det
(

−D2
µ +△2)

where Bab(x , t) = i∆2δab is, as usual, the dominant mode at large D.

Under the assumptions L∆ ≫ 1,∆ ≫
√

λ̃, it turns out that the Wilson
line V decouples from the dynamics, yielding (cf. SZ,AMMW,BEW)

S/DN2 =

∫ ∞

−∞

dx
[

1
2N

Tr
(

|∂xU|2
)

− ξ

N2 |TrU|2
]

.

where

ξ =

√

△0

2πλ̃2β3
e−△0β

and ∆0 is an analog of ΛQCD

△0 =

√

λ̃

2π
log
(

2πΛ2

λ̃

)

+ · · · , λ̃ = (2π∆2
0)/ log(Λ2/∆2

0)
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d=2: large L phase transition

The double trace action was analyzed in [Semenoff-Zarembo,
Basu-Ezhuthachan-Wadia], using the eigenvalue density

ρ(θ, x) =
1
N

N
∑

i=1

δ(θ − θi(x))

The hamiltonian becomes (at large N)

H =

∫

dθ
(

1
2
ρv2 +

π2

6
ρ3 − ξ |u1|2

)

.

where v = ∂θΠ. The hamiltonian admits x-independent
solutions

ρ(θ) =

√
2
π

(

√

E + 2ξρ1 cos θ
)
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The eigenvalue density can be uniform, non-uniform or gapped,
for various ξ-values.

−π −π −ππ π π

ρ(θ) ρ(θ) ρ(θ)

θ θ θ
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d=2: Landau-Ginzburg potential

Here C1 is roughly < TrU > (in a static phase), and V (C1) can
be regarded as an on-shell evaluation of the action S in the
previous slide. There is a clear first order phase transition.
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d=2: Stability and order of transition

E

ξξ0 ξ2ξ1ξ3

Phase I (uniform)

Phase III

Phase II

Gapped

Non-uniform

Energy vs ξ for three types of eigenvalue distribution of the
Wilson line U. ξ is a monotonically increasing function of T .
Note the 1st order transition at ξ1.
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d=2: phase diagram
β

L

?

un = 0
vn 6= 0

un = 0
vn = 0

vn = 0
un 6= 0

un 6= 0
vn 6= 0

1st

2nd
3rd

Figure: Phases at small and large L.
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Gravity correspondence: D2 branes

•To get a gravity dual of d = 2 bosonic YM, start with D2
branes= 3d SYM on T 3 with radii β, L1, L2.

•Consider AP b.c. for fermions along L2. For small enough L2

the corresponding KK modes and all fermions decouple ⇒
d = 2 YM.

•However, for very small L2, the gravity analysis is not reliable;
hence L2 cannot be taken too small, ⇒ fermions persist.

•Phase diagram depends on fermion boundary conditions
along β, L1: (P,P), (AP, P), (P, AP), (AP,AP).

•Gravity solutions (phases) include D0, D1 and D2 branes
(smeared/ localized) and AdS solitons which are double Wick
rotations of these.
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D2: (AP, AP, AP)

β

L1

A

D

B

O L2

L2 C

D2β(L1,L2)

D2L1(β,L2)

D1β(L2)

D1L1(L2)

TrU = 0

TrV = 0

TrU 6= 0

TrV = 0

TrW = 0

TrU 6= 0

TrV 6= 0

TrW = 0

TrU = 0
TrV 6= 0

TrW = 0
D2L2(β,L1)

TrW 6= 0

gravity
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d=2: Combining gauge theory & gravity-extrapolated

β

L

TrU = 0

1st

TrV 6= 0
TrU = 0

TrV = 0

TrV = 0

TrU 6= 0

Lc

Lc

TrV 6= 0

TrU 6= 0

A

B C

O

D

2nd
3rd
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d=2: Dynamical transitions

• We derived the large L effective action above. By flipping t ↔ x1, we
get the following effective action at large β (low temperature)

S(A)/DN2 =

∫ ∞

0
dt

(

1
2N

Tr
(

|∂tV |2
)

+

√

△0

2πλ̃2L3
e−△0L

∣

∣

∣

∣

1
N

TrV

∣

∣

∣

∣

2
)

where V (t) = P exp[i
∫

A1(x , t)dx ].

• The static solutions, as mentioned before, are given by uniform,
non-uniform and gapped eigenvalue distributions. The stability of
these depends on the value of L.

• By using the above action, we can consider dynamical transitions
between these phases, which would include gauge theory duals of
dynamical Gregory-Laflamme transitions.
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Gapless → gapped
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Figure: The figure on the left shows a slightly perturbed gapless
distribution at t = 0. The figure in the middle shows a nearly gapped
distribution (t=8000). The figure on the extreme right depicts ρ1(t) as
it changes from 0 at t = 0 to 0.55 at t = 8000
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Gapless → gapped: density plot

0

0.1

0.2

0.3

0.4

0.5

-3 -2 -1 1 2 3

Figure: Coordinate space fermion distribution corresponding to the
central figure of Fig 4. The ‘waist’ does not vanish at very large times.
cf. Horowitz-Maeda conjecture: ‘no naked singularity’.
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Gapped → gapless
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Figure: The figure on the left shows a slightly perturbed gapped
distribution at t = 0. The value of ξ is 0.23. The figure in the middle
shows a gapless distribution at t = 10000. The figure on the extreme
right depicts ρ1(t) as it changes from 0.5 at t = 0 to 0 at t = 8000
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Open problems and work in progress

Fermions [work in progress with Hiroshi Osono]. Schematically,

ψ2Y + Y 4 = BY 2 + B2 + ψ2Y

= B(Y + 1/(2B)ψ2)2 − ψ4/(4B) = B(Ỹ )2 − F 2/(4B) + ψ2F

⇒ SSB of SO(D).

Higher dimensions (d ≥ 3). In addition to log(D2
µ + B), the

kinetic term F 2
µν plays an important role.

Dynamical transitions: equilibration, time arrow

〈TrY IY I〉/(ND) ∼ ∆2
0. In fact, Ψ(Y 2) ∼ δ(Y 2 − Y 2

0 ). Appearance
of size (horizon?). Need to compute Wilson line in the bulk to
compute the location of horizon.

Saddle point configuration corresponds to black objects, with
entropy O(N2). Origin in the Y I quantum mechanics? Splitting of
the O(N2) level....
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